1,349 research outputs found

    Non-potential field formation in the X-shaped quadrupole magnetic field configuration

    Full text link
    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on February 2, 2014. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and Helioseismic and Magnetic Imager on board Solar Dynamics Observatory. Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hours before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hours before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.Comment: Accepted for publication in Ap

    Source File Set Search for Clone-and-Own Reuse Analysis

    Get PDF
    Clone-and-own approach is a natural way of source code reuse for software developers. To assess how known bugs and security vulnerabilities of a cloned component affect an application, developers and security analysts need to identify an original version of the component and understand how the cloned component is different from the original one. Although developers may record the original version information in a version control system and/or directory names, such information is often either unavailable or incomplete. In this research, we propose a code search method that takes as input a set of source files and extracts all the components including similar files from a software ecosystem (i.e., a collection of existing versions of software packages). Our method employs an efficient file similarity computation using b-bit minwise hashing technique. We use an aggregated file similarity for ranking components. To evaluate the effectiveness of this tool, we analyzed 75 cloned components in Firefox and Android source code. The tool took about two hours to report the original components from 10 million files in Debian GNU/Linux packages. Recall of the top-five components in the extracted lists is 0.907, while recall of a baseline using SHA-1 file hash is 0.773, according to the ground truth recorded in the source code repositories.Comment: 14th International Conference on Mining Software Repositorie

    Stratified Ehrhart ring theory on periodic graphs

    Full text link
    We investigate the "stratified Ehrhart ring theory" for periodic graphs, which gives an algorithm for determining the growth sequences of periodic graphs. The growth sequence (sΓ,x0,i)i0(s_{\Gamma, x_0, i})_{i \ge 0} is defined for a graph Γ\Gamma and its fixed vertex x0x_0, where sΓ,x0,is_{\Gamma, x_0, i} is defined as the number of vertices of Γ\Gamma at distance ii from x0x_0. Although the sequences (sΓ,x0,i)i0(s_{\Gamma, x_0, i})_{i \ge 0} for periodic graphs are known to be of quasi-polynomial type, their determination had not been established, even in dimension two. Our algorithm and the proofs are based on algebraic combinatorics, analogous to the Ehrhart theory. As an application of the algorithm, we determine the growth sequences in several new examples.Comment: 46 pages. arXiv admin note: text overlap with arXiv:2305.0817

    Machine-learning-based high-benefit approach versus conventional high-risk approach in blood pressure management

    Get PDF
    高血圧診療における次世代の個別化医療戦略を提唱 --機械学習により個人の治療効果を予測する時代へ--. 京都大学プレスリリース. 2023-04-05.[Background] In medicine, clinicians treat individuals under an implicit assumption that high-risk patients would benefit most from the treatment (‘high-risk approach’). However, treating individuals with the highest estimated benefit using a novel machine-learning method (‘high-benefit approach’) may improve population health outcomes. [Methods] This study included 10 672 participants who were randomized to systolic blood pressure (SBP) target of either 0) versus the high-risk approach (treating individuals with SBP ≥130 mmHg). Using transportability formula, we also estimated the effect of these approaches among 14 575 US adults from National Health and Nutrition Examination Surveys (NHANES) 1999–2018. [Results] We found that 78.9% of individuals with SBP ≥130 mmHg benefited from the intensive SBP control. The high-benefit approach outperformed the high-risk approach [average treatment effect (95% CI), +9.36 (8.33–10.44) vs +1.65 (0.36–2.84) percentage point; difference between these two approaches, +7.71 (6.79–8.67) percentage points, P-value <0.001]. The results were consistent when we transported the results to the NHANES data. [Conclusions] The machine-learning-based high-benefit approach outperformed the high-risk approach with a larger treatment effect. These findings indicate that the high-benefit approach has the potential to maximize the effectiveness of treatment rather than the conventional high-risk approach, which needs to be validated in future research

    Incommensurate-commensurate transitions in the monoaxial chiral helimagnet driven by the magnetic field

    Get PDF
    Under the terms of the Creative Commons Attribution license.-- et al.The zero-temperature phase diagram of the monoaxial chiral helimagnet in the magnetic-field plane formed by the components parallel and perpendicular to the helical axis is thoroughly analyzed. The nature of the transition to the commensurate state depends on the angle between the field and the helical axis. For field directions close to the directions parallel or perpendicular to the helical axis the transition is continuous, while for intermediate angles the transition is discontinuous and the incommensurate and commensurate states coexist on the transition line. The continuous and discontinuous transition lines are separated by two tricritical points with specific singular behavior. The location of the continuous and discontinuous lines and of the tricritical points depend strongly on the easy-plane anisotropy, the effect of which is analyzed. For high anisotropy the conical approximation locates the transition line very accurately, although it does not predict the continuous transitions and the tricritical behavior. It is shown that for high anisotropy, as in CrNb3S6, the form of the transition line is universal, that is, independent of the sample, and obeys a simple equation. The position of the tricritical points, which is not universal, is theoretically estimated for a sample of CrNb3S6.J.C. and V.L. acknowledge Grant No. MAT2015-68200-C2-2-P from the Spanish Ministry of Economy and Competitiveness. The work of A. S. Ovchinnikov was supported by the Government of the Russian Federation Program (02.A03.21.0006) and by the Ministry of Education and Science of the Russian Federation (Project Nos. 1437 and 2725).Peer Reviewe

    Incommensurate--commensurate transitions in the mono-axial chiral helimagnet driven by the magnetic field

    Get PDF
    The zero temperature phase diagram of the mono-axial chiral helimagnet in the magnetic field plane formed by the components parallel and perpendicular to the helical axis is thoroughly analyzed. The nature of the transition to the commensurate state depends on the angle between the field and the helical axis. For field directions close to the directions parallel or perpendicular to the helical axis the transition is continuous, while for intermediate angles the transition is discontinuous and the incommensurate and commensurate states coexist on the transition line. The continuous and discontinuous transition lines are separated by two tricritical points with specific singular behaviour. The location of the continuous and discontinuous lines and of the tricritical points depend strongly on the easy-plane anisotropy, the effect of which is analyzed. For large anisotropy the conical approximation locates the transition line very accurately, although it does not predict the continuous transitions nor the tricitical behaviour. It is shown that for large anisotropy, as in CrNb3S6, the form of the transition line is universal, that is, independent of the sample, and obeys a simple equation. The position of the tricritical points, which is not universal, is theoretically estimated for a sample of CrNb3S6Comment: 10 pages, 9 figure
    corecore